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Abstract

MRAMFS: a compressing file system for byte-addressable non-volatile RAM

by

Nathan Keir Edel

File systems combining block storage with non-volatile RAM (NVRAM) allow

large improvements in file system performance. However, current technology limits low-

cost use of NVRAM to relatively low capacities; we examined in-memory compression

methods which allow for significantly more efficient utilization of this limited resource.

The first phase of the study measured the compressibility of these objects for

a set of representative file systems. We found that inodes are compressible by at least

76–90% at a rate of 270–900 thousand inodes per second for the best algorithms. Files

in the range of 4–128KB were compressible of 40–60% at rates of 20–40 megabytes per

second.

In the second phase of the study, we developed a prototype in-memory file

system which utilizes data compression on inodes, and attempted preliminary support

for compression of file blocks. This file system, mramfs, allowed for the examination

of data structures tuned for storage efficiency in non-volatile memory. It showed that

for metadata operations, inode compression does not significantly impact performance,

while significantly reducing the space used. It also showed that a naive implementation

of block-based file compression does not perform acceptably either in terms of speed or

compression achieved.



To Marie,

without whose patience and encouragement

this would never have been possible.

ix



Acknowledgments

I would like to thank the other members of the Storage Systems Research Center for

their help and feedback in preparing the original conference papers upon which this

thesis is based. [22, 23]

In addition, I would like to individually thank:

Ethan Miller as my graduate advisor and committee chair, and specifically for

suggesting the ideas of inode compression and using gamma compression for it; and for

shepherding the original pair of conference papers.

Darrell Long and Kevin Greenan as members of my committee.

Karl Brandt for coding the file compression test harness and his collaboration

on the design of file compression tests. Any errors of analysis are purely my own.

Kristal Pollack, Phil White, and Andrew Stitt for their help with inode data

collection.

Deepa Tuteja for her suggestions on benchmarking the prototype file system

and feedback on the MASCOTS paper.

Tim Bisson as a sounding board throughout the research phases of this project.

The original research was funded in part by the National Science Foundation

under grant 0306650. Additional funding for the Storage Systems Research Center was

provided by support from Hewlett Packard, IBM, Intel, LSI Logic, Microsoft, Network

Appliance, Overland Storage, and Veritas.

x



Chapter 1

Introduction

File systems implemented in RAM or NVRAM offer much greater performance

than disk based file systems, especially for random accesses and metadata operations.

However, capacity constraints and the volatility of conventional RAM limit their general

utility. Hybrid file systems combining non-volatile memory and disk storage present the

possibility of significant improvements in file system performance as compared to tra-

ditional disk file systems without the significant limits on storage capacity inherent in

purely memory-resident file systems. Several systems along these lines have been pro-

posed using both existing non-volatile memory technologies—such as battery-backed

DRAM (BBDRAM) and flash memory—as well as emerging technologies such as mag-

netic RAM (MRAM) and phase-change RAM (PCRAM).

The performance benefits of a hybrid file system result from storing metadata

and small files in memory for fast random accesses, while allowing relatively unrestricted

storage of large files. With typical workstation workloads, the majority of file system

accesses are to metadata and small files, so overall performance will primarily be de-

termined by the in-memory file system performance [58]. Accesses to small objects are

primarily limited by time to first byte, making RAM-like technologies more attractive.

For larger objects, however, capacity constraints and the relatively greater importance

of raw bandwidth mean that disk will remain the more cost-effective option for the

foreseeable future.

Despite claims to the contrary [74], with the exception of NAND flash, non-

volatile memory capacities can be expected to be limited for the foreseeable future, and
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NAND-flash remains a form of block storage and still relatively expensive compared to

disk. While byte-addressable NVRAM prices may approach those of flash in the long

run, at present they are niche or emerging technologies which can be expected to be

limited in capacity in the near term.1

Assuming non-volatile memory capacities remain small relative to overall file

system sizes, hybrid file systems should use that limited capacity as efficiently as pos-

sible. One way to help do so is to incorporate features such as compression. Data

compression is of particular interest because of the rapid improvement in processor

speeds relative to the slow improvement of storage bandwidth and latency [76].

Compression of small objects such as metadata and small files has long been

neglected because there is little point to compressing small objects given the long la-

tency of individual disk accesses. While there has been some interest in compression

of caches in purely volatile memory both in general [20, 40, 55, 17, 31] and specifically

for disk caches[12], limits on NVRAM-based or hybrid file systems make compression a

particularly attractive tool for reducing capacity requirements and system cost.

Data compression works by exploiting similarities between pieces of data. Con-

ventional algorithms can be used either on a single stream of data or file—adaptively

detecting those similarities within the file/data stream)—or they can be used as static

compressors—taking advantage of a priori knowledge regarding the class of data be-

ing compressed. One standard example of the latter is text file compression using a

dictionary built using the known frequency of characters in a given language; another

is gamma compression which works on the assumption that shorter bit strings (lower

values) will be more frequent than longer ones (higher values) [77, 24].

1.1 This Study

We explored the potential space savings and performance cost of compression

for metadata and small files. In the first phase, we examined compression mechanisms

1In earlier work, we made the comparison to the cost of DRAM, which was then still cheaper than
flash. Flash is now considerably cheaper than DRAM, but still pricier than disk. There is relatively
little technical reason BBDRAM should be much pricier than conventional volatile DRAM—differing
in the component cost of the battery and controller—but in practice in the consumer and workstation
market it has remained limited to niche products, and its cost in enterprise-level products remains very
high.
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without regard to specific design decisions for a disk/NVRAM hybrid file system. We

focused on static compression methods for metadata and stream compression for file

data. This was based on the assumption that static compression would be better suited

to independently compressing the very small blocks of data in metadata, while stream

compressors would better handle the unknown data types for file data.

In the second phase, we developed a prototype file system for Linux, mramfs,

in order to explore the costs and benefits of metadata and small-file compression. It

differs from prior file systems in that it is not tied to volatile main memory through

tight integration with the VFS caches like ramfs or tmpfs [64], and it is tuned for byte-

addressable NVRAM rather for flash memory’s particular constraints. Its support for

compression notwithstanding, mramfs is most closely comparable in function to running

an unjournaled disk file system such as ext2 on a RAM disk or emulated block device.

However, with compression and some structures tuned specifically for random access

memory, it offers greater space efficiency and potentially better performance. It could

also serve as the basis for a future disk/NVRAM hybrid system along the lines proposed

for HeRMES [50].

Both phases of the study made certain assumptions about the target system

for which a final file system might be developed. In particular, it assumes the range of

systems and applications to be supported were intended for PC-class systems running

Linux or a similar Unix-like operating system; we did not consider whether it would be

appropriate for mobile or embedded systems.

While we did not assume the use of any particular kind of non-volatile memory

technology, it does assume that the NVRAM is randomly accessible at byte (or word)

boundaries for both reads and writes. Our performance analysis also assumes that the

NVRAM has predictable (but not necessarily symmetric) random access performance

for both reads and writes. Additionally, the prototype assumes that the NVRAM can

be mapped directly into the system address space, although relaxing this requirement

would add only slightly to complexity.

It should also be noted that if data transfers to and from NVRAM are slow

relative to main memory, compression may show an increased net benefit in performance
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by reducing the amount of data transferred to persistent NVRAM.2

Although the compression techniques we propose could be used as part of

a file system for any sort of flash memory, our system would need to be restructured

significantly to be useful. All forms of flash memory have very distinctive characteristics

that present separate challenges to file system design [21, 68, 79], and these issues would

present similar challenges to designs for hybrid file systems incorporating flash memory.

Other studies have suggested that using a log structure is preferable for a flash-specific

file system, among other reasons because it lends itself to efficient wear-leveling [59, 79,

78]. One proposed use for non-flash NVRAM in such a hybrid flash/nvram system is to

make the log structures themselves more efficient [36]. File data compression in a log

structured file system has been a subject of research [8], and is implemented in some

file systems for embedded flash.

2With present processors, that may apply to disk in some cases as well—note the very positive
reports on compression performance on zfs [44] and btrfs [43].
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Chapter 2

Related Work

The use of non-volatile memory for file systems is not new; Wu and Zwaenepoel

[79] and Kawaguchi, et al. [41] presented designs for flash memory-based file systems.

Existing flash storage may either use a flash translation layer (FTL)—which can be

implemented in either software or hardware, and which exposes the flash device as if

it were a disk to be used by a conventional file system—or any one of a number of

dedicated file systems for flash.

Dedicated file systems optimized to run on flash memory (whether generally

or specifically for NAND or NOR variants) include the Microsoft Flash File System

[21, 45], JFFS2 [78] and YAFFS. More recently, the authors of BPFS [11] suggested a

design for tree-based filesytem adapted to byte-addressable NVRAM (and PCRAM in

particular.)

Of particular note, JFFS2 is a log-structured file system [59] optimized for flash

memory usage that does support compression of data and metadata, but it cannot sup-

port hybrid storage, and there is little information on the effectiveness of its compression

algorithms. JFFS2 is not the first file system to use compression; other disk-based file

systems have done so as well [8, 80], and compression has been proposed as an extension

to the commonly used ext2 file system on Linux [73]. Compression has also been used

at the flash translation layer level [33].

None of the older flash specific file systems have taken a hybrid approach

with disk, and most have been aimed at embedded or mobile systems rather than

general purpose computing. Some more recent embedded file systems have used a
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hybrid flash plus NVRAM approach, with FeRAM (as in the case of FRASH [36]) or

PCRAM [42, 57, 26] as the non-flash component. Other more recent systems explored

the combined use of flash SSD with conventional disk. HybridFS [66] used SSD to store

metadata with disk for file data, Combo Drive [54] focussed on data access patterns

to divide data between SSD and disk, while Griffin [65] suggested the use of disk as a

logging write cache for SSD.

Over the past decade, there had been a renewed interest in hybrid disk/NVRAM

file system, particularly as flash memory has dropped in price and alternative technolo-

gies such as MRAM [5, 71, 83], FeRAM [49], and phase change memory (PCRAM) [18,

57] appeared to be coming closer to being in production. The HeRMES file system [50]

and the Conquest file system [74] are examples of hybrid disk/NVRAM file systems in

academe. However, the two systems make different assumptions about the type and

quantity of available non-volatile memory. HeRMES, developed to take advantage of

MRAM, assumes a relatively modest amount of memory and a possible difference in

performance between file system NVRAM and main memory. Conquest, developed to

take advantage of battery-backed DRAM, assumes a copious amount of NVRAM and

uniform access times. Neither system uses a technology with wide mainstream avail-

ability, although the Conquest system does simulate its ideal technology and provide

some degree of battery backup for memory by using a UPS to provide backup power

to the system as a whole. The HeRMES project suggests the use of compression or

compression-like techniques in order to minimize the amount of memory required for

metadata. By contrast, Conquest minimizes the required memory used for metadata

purely by using a stripped down version of the standard on-disk metadata structures.

There have been a considerable number of studies of the distribution of file

sizes, and file lifetimes [2, 60, 58, 25, 69]. There has also been some discussion of the

distribution of file ownership and permissions as it relates to file system security [37, 56].

Beyond work on file systems, there has been considerable work evaluating the

use of compression techniques for in-memory structures. Douglis proposed the use of a

compression cache, which would implement a layer of virtual memory between the active

physical memory and secondary storage using a pool of memory to store compressed

pages [20]. This idea has been expanded upon in several directions; Wilson, Kaplan,
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and Smaragdakis evaluated the use of different compression mechanisms for memory

data [40, 76], and Cortes, et al. evaluated the performance of using such techniques on

a modern system [16]. As of 2003, there was an ongoing effort to implement a compressed

page cache on Linux [17]; this seems to have been superceded by an implementation of

a compressed block driver for swap which is (since 2.6.33 in late 2009) included as a

staging driver in the mainline Linux kernel [31].

A number of compression mechanisms could be used to compress metadata, in-

cluding any of the block or stream mechanisms evaluated by Wilson, et al. [76] and used

in the Linux-Compressed project [17]. However, simpler mechanisms such as Huffman

coding using a precomputed tree [13], gamma compression [77], and other prefix encod-

ings [77] can all be used to good effect without the same degree of runtime processing

overhead.

Aside from its use for file storage, NVRAM has frequently been used for buffer-

ing. It is used either as a speed-matching buffer or to allow safer delayed writes. For

example, WAFL uses battery-backed NVRAM for a write ahead log [32]. Relative to

file system size, however, the amount of NVRAM useful as a buffer is typically small.

Baker, et al. [1] showed that while a megabyte or so of NVRAM used as a write buffer

could have a significant positive impact on performance, the return from increased write

buffer sizes diminishes quickly. Recently, NVRAM buffering in conjunction with flash

has been shown to be advantageous for hot writes [26] and for speeding up operations

on log-structured flash[19, 36]. It has also been suggested that an NVRAM write cache

could help with power consumption by allowing disks to remain in a low-power/spun-

down state [3]. It is conceivable that compressing written data into a buffer would

effectively increase its size.

Using volatile RAM for temporary file storage is a well established technique,

either by using it as a RAM disk that emulates a block device, or as a temporary in-

memory file system. Several such systems exploit caches built into the VFS layer of

modern Unix-like operating systems; these include examples on Linux (ramfs), BSD

(memfs [46]), and many commercialUnix variants [64]. There is an early effort to extend

the swap specific compressed cache on Linux to a general compressed ramdisk [12, 31].

Battery-backed RAM has in the past been frequently used in mobile devices,
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such as those running older versions of Windows CE or the Palm OS. This has largely

been replaced by flash based storage. Douglis, et al. [21] studied storage alternatives

for mobile computers, including two types of flash memory. They noted that flash

memory as it existed at the time was slow, particularly for writes. This has changed;

fast commodity and enterprise solid state disks exist as drop-in replacements for SATA

hard drives. These offer faster performance than disks in most dimensions, although

challenges remain in other areas—most notably, costs remain quite high relative to

disk.1 There have also been interest in disk-flash hybrid systems, both in academia and

industry; there have been attempts to use hybrid disks with flash on board [4, 63] and

to use a separate SSD or flash card as a a cache to speed up reads [15, 53].

In addition, NAND flash—the primary form of flash used for bulk storage —

has a block interface and is not byte-addressable for either reads or writes. Many of the

same arguments for a hybrid disk-NVRAM file system apply to a hybrid flash-NVRAM

file system, and such systems have been developed. [36]

While this prototype could be used with any fast byte-addressable form of

NVRAM, there has been significant interest in MRAM specifically [5, 71, 83]. There

were a number of recent technical advances around 2004, including a fast (35ns) 4 Mbit

part discussed by Motorola [51] and eventually released (now sold by Everspin, after

divestiture by Motorola and Freescale in turn.) While this has had market availability

for several years, and largest broadly available capacity of 4 megabits either as 512K

bytes or 256Kx16-bit has remained constant, at a fairly consistent price—around $25–

30 [14] as of early 2010; a 16Mbit (1Mx16-bit) part was announced by Everspin in

2010 [70]. This is several orders of magnitude smaller and pricier than DRAM; it

remains unknown how quickly this will evolve past a niche product with capacities too

small for significant mass storage use. FeRAM (Ferroelectric RAM) is also available

in slightly higher densities; the FRASH embedded file system uses a 64Mbit FeRAM

unit although it was not clear whether this was commercially available or a research

sample [36]; another non-storage study used smaller FeRAM parts (in an embedded web

server) at around the same cost and density as commercial MRAM. [34]

Practical battery-backed DRAM and SRAM cards are available for desktop

1Which is as of late 2010 in the rough ballpark of of $1–$3 per gigabyte for commodity SSD vs.
$0.05–$0.50 per gigabyte for disk.
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PCs, but they are specialty or enthusiast products and not typically available in the mass

market; the least expensive of these are also limited to a fixed block device emulation

and to the relatively low capacity of 4GB [47]. DRAM-based storage is also being

used in high end enterprise storage products, such as TMS’ RamSan products [67] and

Kaminario’s DRAM storage appliance [38].
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Chapter 3

Compression of Metadata

In this chapter we address the compressibility of metadata. First, we review the

structure and baseline sizes of uncompressed Unix metadata (inodes) in Section 3.1.

This is followed by an overview of our data collection methods and the systems we

collected data from in Section 3.2. We compare mechanisms of inode compression,

including three static compressors (all-or-nothing, precomputed Huffman table, and

gamma compression) in Section 3.3. Finally, we present our the results of running

those compressors on sample file systems in Section 3.4, showing that inodes are highly

compressible using static compressors.

3.1 Baseline sizes

Most of the systems we analyzed used a version of the Unix file system seman-

tics; thus, we decided to use Unix metadata for our study. Metadata in Unix is stored

in inodes; in widely-used file systems such as the Berkeley Fast File System (FFS) [48]

and the Linux ext2 file system [6], each file has a single 128–byte inode that contains in-

formation such as owning user ID (UID) and group ID (GID), permission bits, file sizes,

and various timestamps. In addition, each inode in FFS and ext2 contains pointers to

individual file blocks or indirect blocks. The two newer related file systems, ext4 and

current versions of ext3, default to a larger, 256-byte inode; on ext3 the extra space

is entirely used for non-core metadata (fast symbolic links, extended attributes, and ei-

ther extents or additional block pointers) while ext4 extends the basic data beyond 128
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bytes.1 The file systems used by Windows (NTFS or FAT/FAT32) do not use inodes as

the data structure for metadata storage, but the basic data recorded is largely similar

on NTFS.

With the 128-byte inode used in the ext2 file system as of the later 2.4 kernel

versions of the Linux kernel, 74 bytes were used for block pointers and reserved free

space; the remaining 54 bytes contain information that must be kept for each file.2

This is very close to the size of inodes used by the Conquest file system—

Conquest’s file metadata is 53 bytes long, and consists of only the fields needed to

conform to POSIX specifications [74]. This was used as a baseline for the memory

requirements of an in-memory inode, and represents a reduction in size of 46% simply

by stripping out the unused fields. Note, however, that some replacement for the block

pointers will be necessary for larger files as these would be kept on disk. If the indexes

for these are kept in memory, compression techniques would be applicable to them as

well—both block pointers (as in ext2 or ext3) and extents (ext4) might be amenable

to some form of compression. Alternatively, for large files, a single pointer to an on-disk

structure could be maintained.

3.2 Data Collection

To study the compressibility of metadata, we first gathered data on current

systems to serve as a sample on which to try different compression algorithms.

Our data collection was done in two stages. To initially verify the assumption

that there is a high level of similarity among file metadata on the class of systems being

examined, we used a short Perl script to produce statistics from directory dumps.

The Perl script was run on a total of eight file systems: 5 general purpose Linux

workstations, one “clean install” of Redhat Linux 8.0, one Windows 2000 system, and

one large multi-user Unix server. Of these, all but the Windows 2000 system provided

useful information. The data from the Windows 2000 system proved mostly unusable

because the directory dump provided by the Cygwin version of ls we were using did

1As found via code inspection; in particular, several fields are now 64 bits—for example, to allow
nanosecond values in the case of the timestamp fields.

2As of 2.6.35; this does not appear to have changed in practical terms for desktop use although
several formerly reserved fields are now designated for special purpose features such as 32-bit UID/GID.
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Table 3.1: File system profiles.

Total Total % of Total Common

System Files ACLs System UIDs Size

Redhat 8 root (2002) 213,569 119 98.8% 5 4–8KB

Linux server root (2002) 431,615 165 59.5% 4 1–2KB

Linux server /home (2002) 378,842 78 4.5% 4 64–128KB

Workstation root (2010) 614,848 154 98.9% 19 4–8KB

Linux server root (2010) 1,897,649 325 91.1% 45 4–8KB

Linux server /home (2010) 1,444,090 160 1.3% 12 4–8KB

Unix server (all files) 1,618,855 10,417 28.8% 158 0.5–1KB

Faculty directories 1,048,577 2,299 – – 2–4KB

Grads directories 1,141,004 7,554 – – 128–256B

SSRC shared dirs 789,376 1,229 – – 1–2KB

not accurately reflect the NTFS permissions or ownership information. The file size

distributions extracted were similar to the file size distributions of the Linux systems

and to the results found in previous studies of file sizes [58, 68].

All six Linux systems followed a very similar pattern, with permissions and

file ownership very highly weighted to system files owned by the superuser (root). File

sizes, as with the Windows 2000 system, roughly corresponded with the distributions

found by previous studies [58, 68]. Because the distributions were based on the entire

directory tree, and not simply one file system, they were skewed somewhat by entries

in the dynamically generated /proc and /dev Linux file systems, which are typically

very small. The large Unix system, which was running SCO Openserver, a commercial

x86 Unix implementation, had approximately 1.1 million user files owned by 160 UIDs.

The number of system files and their distribution of combinations of UID, GID, and

permission bits were similar to those of the Linux systems, although their number on

this server was dwarfed by the number of user files. Overall, the number of permission

combinations was somewhat greater for the large system, though the distribution of

file sizes was very similar. We did some initial compression tests on these dumps, as

described in Section 3.3 and Figure 3.1.

Based on these initial tests, we proceeded to gather additional traces of large

multi-user file systems from our departmental file systems because the most “difficult”

system to compress was the large Unix server. We performed the remainder of the
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analysis on the departmental file systems, theUnix server file system, and representative

file systems from a Linux workstation, as summarized in Table 3.1, which shows various

characteristics of each of the seven file systems. Table 3.1 lists, for each file system, the

number of files (active inodes with more than one link to them), the number of unique

“ACLs” 3, the percentage of system files as determined by the number of files owned by

root, adm, or bin, the number of UIDs owning at least 0.1% of all files, and the most

common size class of files as grouped by powers of two.

This table also contains values for Linux systems from 2010, collected using

the tools developed for the original paper; the three 2010 file systems come from a

little-used laptop installation of Linux, and from the root and home file systems of the

(several times upgraded) home server used in the 2002–2003 figures. While the number

of files and amount of date have increased greatly, the basic profiles do not appear

to have changed to a similar degree—the biggest difference is a moderate increase in

the number of ACLs. Looking at the detailed dumps, on the two root file systems

around 70% of all files share the same ACL (root:root, 644), and the frequency of other

ACLs falls off quickly. On the Linux homes directories from 2010, the distribution looks

increasingly like what was seen on the Unix system from 2002: a handful of common

permission sets multiplied across the set of users.

3.3 Inode Compression Mechanisms

We evaluated four different inode compression techniques. As a control, we

used a conventional adaptive compressor, deflate, from the zlib compression library [27].

We tested this algorithm both on binary copies of individual inodes and on a single bi-

nary file containing the full set of inodes. The three remaining compressors were static

compressors, tuned specifically for inodes.

The first static compression mechanism we evaluated for compressing inodes

was a very simple all or nothing prefix compressor that encoded fields as shown in

Table 3.2.

The second compression mechanism we evaluated for inode compression was

the use of precomputed Huffman codes. These were based on the distribution of fre-

3In this case, we actually mean pseudo-access control lists—unique UID:GID:Mode triplets.
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Table 3.2: Rules for the all-or-nothing compressor. There are two different types of
fields, A and B. User ID would likely be an A-type field (single most common value—
root), while file length would likely be a B-type field—most file lengths can be repre-
sented in relatively few bits.

Type Compress field if value: Compressed representation Uncompressed representation

A Matches the single most common case Single bit: ‘0’ ‘1’ followed by entire field

B Can be represented in n bits or fewer ‘0’ followed by n bits ‘1’ followed by entire field

quencies of values in various inode fields across all of the inodes in each file system. For

fields with a limited set of discrete values, such as UID/GID pairs, the Huffman codes

represented the actual values for those fields. For fields with a range of bit lengths,

the Huffman codes represented prefixes which were followed by the indicated number of

data bits.

In order to handle variation between the file system profiled to generate the

tree and the file system where inodes were being compressed, we added a value to

the tree with initially minimum frequency to indicate OTHER. This code would be

followed by the full regular value for an ext2 inode. For discrete value fields, it is used

to represent values not known at the time the tree was generated.

One downside to Huffman codes is that, given a distribution with many low

frequency values, the tree used to generate prefix codes can become quite deep. To limit

the maximum depth and size of the tree, we eliminated values with frequencies below a

certain threshold, which we set at 0.1%, and added the total frequency of all eliminated

values to the OTHER value when it was inserted. This appears to have had little

effect on the average case, because the items being replaced were very low frequency to

begin with. On the other hand, it dramatically limited the length of the longest codes,

reducing the worst case length of each field. Although this may be less than optimal, we

believe the tradeoff is reasonable to guarantee a lower maximum length for a compressed

inode.

The third mechanism we evaluated for compressing inodes was gamma com-

pression, a method of efficiently coding variable length numeric values [77, 24], shown in

Table 3.3. It represents each value as a unary prefix (k 1 bits followed by a single 0 bit)

followed by a binary field of length determined by looking at entry k entry in a small
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Table 3.3: Sample table for gamma compression.

Unary Length in bits Minimum value Range

0 1 0 0–1

10 3 2 2–9

110 7 10 10–137

1110 12 138 138–4233

table. Gamma compression further reduces sizes by offsetting the start of “bucket” k

by the sum of the size of the buckets for smaller values of k. Gamma compression is

particularly efficient for certain common types of distributions: those that have large

quantities of small values. We used a very simple method of building the tables using

the frequency distributions collected for the Huffman tables which produced very good

results for the distribution of values on most fields; we did not specifically examine

whether an algorithm to develop an optimal table exists.

One additional refinement we used with gamma compression was to implement

a pseudo-ACL mechanism. This system replaced the UID, GID, and Mode fields with

references into a table containing UID/GID/Mode triplets. This reduced 48 bits4 to

a maximum of 14, and reduced the number of compression operations per inode by

two, at the expense of the table lookup operations. It also, in theory, would allow for

the easy replacement of the standard Unix user:group permission system with a more

flexible ACL mechanism. Based on the data we collected, this should scale to systems

with moderately large numbers of users and groups, but the practicality of scaling this

to systems with very large numbers is unknown.

3.3.1 Implementation

The first piece of code we implemented was an inode scanner, which dumped

a raw binary copy of the file system’s in-use inodes to a one file and a text listing of the

inodes’ fields to another file. This used the libext2fs library, and was loosely based

on the e2image utility [72]. We also modified the same scanner to compress the inodes

4The length of 48 bits as of 2002 has been increased to 80 bits with support for 32-bit UID and GID
in newer versions of ext2/3/4.

15



with zlib using both the block compression and stream compression modes [27], and

to output 54-byte Conquest-like uncompressed in-memory inodes.

We wrote a small Java application to scan the text file of inode fields and

produce frequency lists and Huffman trees for each of the interesting fields. After

examining the output for correctness, we modified the output to produce a machine

parseable source file with array representations of the Huffman trees for the decoder;

this was later modified to also produce gamma compression tables. It should be noted

that no effort was made to optimize or time the process of assembling frequency lists

and building Huffman trees. In a production environment, this process would be done

infrequently—only during the one-time creation of a static compressor, in which case

performance is not a significant issue.

Finally, we wrote a compression test harness in C++. The first version simply

calculated the effectiveness of all-or-nothing compression, without actually doing any

compression, and provided some preliminary results. The second version implemented

all three compression mechanisms and was also better suited to doing compression rate

estimates; additionally, we implemented a decompressor for Gamma compression in

order to verify the correct functioning of at least one of the compressors and to confirm

our expectation that decompression would be quicker than compression.

3.4 Inode Compression Results

Our initial results came from the first version of the scanner and test harness.

In particular, it estimated the size of all-or-nothing compressed inodes as a proof of

concept, but did not perform actual compression using bitwise operations. This was

tested against only one of the file systems we eventually tested against, the root file

system of a Linux workstation; the overall number of inodes in use was 213,569 (out of

641,280 total) of which 3,541 were non-files with no blocks. The vast majority (about

98%) of these were system files owned by the root user (UID 0); home directories for

were on a separate file system. Copied to a disk file, the total space taken by the in-use

inodes was about 27MB (27,336,832 bytes) uncompressed. The process of reading in

all inodes, both in-use and not in-use, took approximately 3.5 seconds, averaged over

10 runs measuring to the nearest second, without writing any of the dump files to disk.
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Figure 3.1: Initial compression results. “CQ-like” inodes are those stripped in a way
similar to that in Conquest [74].

When we repeated this test with Conquest-like in-memory inodes, the space used was

about 11MB (11,532,726 bytes). These runs were not timed, as no processing was being

done on the inodes; fields were simply dropped.

To test compressibility and establish a control, we tried compressing the entire

file of raw inodes and the file of stripped inodes with gzip and bzip2 to gauge the

likely limits of compressibility. Our initial results for the first suite of compression tests

are shown in Figure 3.1. We found that gzip achieved roughly 8:1 compression, and

bzip2 achieved approximately 10:1 compression. This is corresponds to about 9 bytes

per inode on the Conquest-like inodes. While it is still beyond what our compressors

achieved, it presents a reasonable goal.

The simple all-or-nothing compression algorithm reduced space utilization to

about 5.1MB, or an average of just less than 23 bytes per inode—an improvement of

about 55% over the 54-byte Conquest-like stripped inodes. It is also more than an 80%

improvement over the standard 128-byte inode, but most of this is simply a matter

of dropping the disk-specific information. Running this compressor, without any file

writes, took roughly 3.5 seconds, averaged over 10 runs as before. This was identical

to the time required to read the inodes without compressing them. In order to have

a comparison to the zlib-compressor’s performance, the test was repeated writing the
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compressed inodes, and over 10 runs the compressor consistently ran in 6 seconds.

We repeated the scan, compressing the raw ext2 inodes using the zlib deflate

compressor. Initially, we used the zlib “block at a time” call on each inode, but the

resulting performance was poor: two test runs took 115 and 116 seconds. The scanner

was revised to open a zlib compressed file and write each inode to the stream. This was

almost 20 times faster, taking approximately 6.5 seconds, averaged over 10 runs. Inter-

estingly, the output produced by both methods was identical; the compressed stream

was apparently treating each write call as a separate block, but the performance was

vastly improved. The zlib compressed image was roughly 5.9MB, somewhat larger

than the results of our all-or-nothing compressor. However, according to the zlib doc-

umentation, there is a 12 byte header per block [27], so nearly 50% of the compressed

file was block headers.

Based on the encouraging results from our first set of compression tests, we

proceeded to run more extensive tests using different compression mechanisms. As

discussed in Section 3.2, we first gathered more complete inode information on additional

Unix systems. We generated profiles—frequencies, gamma tables, and Huffman trees-

l–for each of the seven file systems on which we ran tests, and then manually coded

all-or-nothing compressors for each of the file systems. For each file system, we tested

each compressor, using first using the profile produced from that file system, and then

the other profiles from the other file systems. For each, we measured the total elapsed

time to compress all the inodes and the total size of the compressed inodes. From

these, we calculated the average bytes per inode and the compression rate for that file

system/compressor/profile.

As expected, the best compression was achieved in all seven cases when the

profile matched the file system being compressed. In four cases out of seven, Huffman

compression achieved the greatest space reduction. In the remaining three, gamma

compression performed best. In all seven cases, all-or-nothing compression performed

worse than either gamma or Huffman compression. It should also be noted that the

difference between best and worst profiles was less significant for gamma compression

than either Huffman or all-or-nothing.

As shown in Figure 3.2, best-case compressed inode sizes ranged from 14 to 19
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Figure 3.2: Average bytes per inode using the best and worst profiles for each file system.
The colored bar for each compression technique shows the compressed size using the
best profile, and the thin bar shows the range of compressed sizes using different file
system profiles.

bytes, when using the best compressor and the profile generated from the original file

system. Selecting the worst possible profile for each file system/compressor combination

resulted in a compressed inode size that ranged from 30 to 37 bytes.

The speed of compression is also a very relevant factor because inode com-

pression and decompression must be fast for the technique to be used in a regular file

system. Fortunately, we found that the compression techniques we choose were suffi-

ciently fast that they would not limit file system throughput. All compression tests

were run on a 1.8GHz Pentium 4 processor. These tests read the full set of inodes

into memory and preallocated buffers for the compressed inodes before attempting any

compression. The rates of compression for the gamma and Huffman overlapped slightly,

with Huffman running at 270,000–600,000 inodes per second, and Gamma processing

480,000–600,000 inodes per second. The all-or-nothing compressor was somewhat faster,

compressing 800,000–950,000 inodes per second. Decompressing inodes was significantly

faster, achieving a rate of 2.2–2.7 million inodes per second.
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Figure 3.3: Compression rate, in thousands of inodes per second, for the best and worst
profiles on each file system. The top of the shaded bar is the rate for the worst profile,
and the top of the thin bar is the rate for the best profile.

Our gamma and Huffman compressors included variables to track the best,

worst, and average bit width of each field. We retained these for certain interesting

fields, and the results show the strengths of each compressor for certain types of data.

Figure 3.4 compares uncompressed size with the measured best, average, and worst

cases for the Huffman and gamma compressors averaged across all seven file systems.

The results for the timestamp values show the difficulty in compressing these

values. The typical cases for both codes are still quite long, and in one case shows that

a degenerate case may be longer than the standard 32-bit value. This already included

several minor optimizations, including storing the creation time (CTime) as a delta from

the millennium rather than the Unix epoch, and the modification time (MTime) and

access time as deltas from the CTime and MTime respectively.

It is not clear that these values can be compressed significantly on an indi-

vidual basis, but one mechanism worth considering is a common point from which files

could measure deltas, such as the directory creation time, possibly improving the de-

gree of compression. Alternatively, if the file system had some cleaning mechanism for
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Figure 3.4: Compression effectiveness for different inode fields. For each field, the
average field size is at the top of the shaded bar, and the error bars reflect the minimum
and maximum field sizes. Note that gamma compression treats user IDs and mode bits
as a single field; thus, it uses 0 bits for the individual fields.

compressed inodes, along the lines of the cleaner in a log-structured file system [8, 59],

a mechanism which reduced the timing resolution of older inodes could also be used to

save space.

Additional space could be saved by transforming several fields in concert. One

simple example of this is the pseudo-ACL mechanism we implemented. As noted by

Reidel, et al. [56], the number of unique permission sets in a file system is relatively

small, and, as shown in Section 3.2, on some file systems many files fall into the category

of “system files” and could be represented by a small encoding in either Huffman or

gamma compression.

It is interesting to note is that a significant part of the compression—shared

across all three compressors—comes from required fields that are very seldom used on

low-end Linux installations, such as the file flags, the deletion time, and the POSIX

file and directory ACL entries. These fields are essentially treated as optional under

the current encoding schemes; it would be useful to examine to what extent these are

ever actually used in production systems, and if so, what kind of distributions they fit.

Similarly, all of the encoding methods allow for very efficient encoding of “extended”

fields where upper values are seldom used, such as the extensions for 32-bit UID and

GID or the 64-bit extension for file size.
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Chapter 4

Compressing Small Files

In this chapter we review the motivation for compressing small files and discuss

conventional methods of file data compression. We present our test setup comparing

three different Lempel-Ziv variants across three different file systems. Finally, we show

results of our tests indicating that small files are typically highly compressible with

compression speeds not slower than that of desktop disk transfer rates.

Storing only metadata in fast persistent storage would be of limited value if

access to the corresponding data always required a disk access. While compression is

normally thought of as a technique that is applied to large files in order to save stor-

age space on disk, today neither storage space nor bandwidth are particularly limiting

factors compared to latency. Storing files in memory reduces the access latency, but as

long as memory is a relatively limited resource, large files will need be stored on disk,

while it may be practical to store small files in memory. By increasing the effective

capacity of the fast but small memory, compression allows a greater number of files to

be stored in memory and thus accessed with reduced latency.

Compressing file data is a somewhat different problem from compressing meta-

data. While metadata is structured and relatively regular, file data is neither inherently

unstructured nor regular; a file on Unix or similar operating systems is simply an arbi-

trary sequence of bytes. While files of a given type can be fairly regular, the file’s type is

not reliably recorded as part of the standard metadata on Unix-like operating systems.

Without some knowledge of the file’s type, the best option is to use a general-purpose

block/stream compressor. The most popular of these are dictionary-based compressors
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in the Lempel-Ziv family [81, 82], although one broadly used compression program,

bzip2 [62], uses a block-sorting algorithm based on Burrows-Wheeler transforms [7].

Our compression tests were performed on three of the file systems used for the

inode compression tests, the Linux workstation file system and the news server /home

and /root file systems because neither the large Unix server nor the departmental file

server was available for these tests. The compression tests were also performed on an

additional Linux workstation that had a combined file system including both the root

and home directories. The tests consisted of loading each file under a given size limit

into memory and then averaging the time across several compression and decompression

cycles while measuring the total space saved by compression for each file.

We ran these tests for three different adaptive compression algorithms. These

were all block compressors of the Lempel-Ziv family. Deflate from the zlib library [27] is

a relatively recent variant of LZ77 [81] intended for general purpose file compression. We

compared the effectiveness and speed of deflate against two compressors which which

are specifically optimized for speed and low resource requirements, LZO (Lempel-Ziv-

Oberhumer) [52] and LZRW1 (Lempel-Ziv-Ross-Williams) [75]. The selection of these

particular compressors was motivated in part in order to parallel prior work on swap

compression; both LZRW1 and LZO have been evaluated for that purpose [16, 20, 76,

31].

We focused on the compressibility of files containing up to 128KB of uncom-

pressed data. This threshold was selected based on two assumptions: first, that a

threshold much larger than this would likely require relatively very large amounts of

memory, and second, that files much larger than 128KB were increasingly likely to in-

clude some media files that were likely already compressed. Also, we expected that the

very smallest files would not be particularly compressible.

The results for the two Linux workstation systems, and the root file system

of the news server closely matched expectations. We averaged files across size bins

at 512-byte increments; all three compressors showed very similar curves on all three

file systems. The curve showed a flat average degree of compression for files between

4KB and 32KB. Files between 32KB and 128KB showed a similar or slightly higher

average degree of compressibility overall. Files below 4KB showed a decreased degree
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Compressor Average Compression Average Rate 512B–4KB 16kB–128KB

Deflate 61% 6.3MB/sec 1–15MB/s 26–38MB/s

LZO 50% 36.8MB/sec 1–13MB/s 30–57MB/s

LZRW1 44% 52.5MB/sec 2–20MB/s 35–54MB/s

Table 4.1: Average file compression and speed range by compression technique and file
size class.

of compressibility.

The graph we generated appeared to suggest that that the variability between

individual size bins increases as we approach 128KB although it has been suggested in

online commentary about our original paper that this is an artifact of using bins with

strictly equal file size ranges (varying the number of files per bin). The comment goes

on to suggest the alternative of bins with an equal number of files (varying the range of

file size per bin) [30].

Figure 4.1 shows the compression effectiveness by file size on the Linux work-

station root file systems. The rate of compression was also similar across those three

systems, with all three of the compressors reaching their average rate of compression

above a certain minimum size file. Figure 4.2 shows the average compression rates by

file size on the same Linux workstation file system. Decompression rate followed similar

patterns, but was much faster, averaging around 125–150MB/sec.

Figures 4.1 and 4.2 shows that deflate provided significantly better com-

pression than either LZRW1 or LZO at the expense of significantly worse performance

than either. LZO provided slightly better compression than LZRW1, at the expense of

slightly worse performance. The overall average compression ratio and the average com-

pression rates in megabytes per second are shown in Table 4.1. The figures in Table 4.1

were measured on the Linux workstation root file system, but results for the other file

systems except for the news server home directories were similar. Note that, even for

the slowest compression algorithm, deflate, the file system would be able to transfer

over 600 10KB files per second. For the faster algorithms, the file system could transfer

3500–4000 such files.

Unlike the other file systems, the home directory file system on the news server

did not meet our expectations; it had particularly irregular distributions for both com-
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Figure 4.1: Compressibility of files on the root file system of the Linux workstation,
calculated across a range of file sizes. The top line shows compression for LZRW1 is the
top, and the bottom line for deflate.
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Figure 4.2: Speed of compression for the files on the root file system of the Linux
workstation, calculated across a range of file sizes. The top line shows the speed for
LZRW1, and the bottom line for deflate.
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Figure 4.3: Cumulative space required for compressed files.

pressibility and rate of compression. On examination of the disk’s contents, this was

caused by the large number of JPEG images ranging from thumbnails (2–6KB) to much

larger files. Compressed file formats such as JPEG typically cannot be compressed fur-

ther by the lossless compression techniques we were using, and attempting to recompress

them tends to be a relatively slow process. This problem could be usefully addressed if

the file system metadata could reliably be queried for file type, or if the file system had

a good heuristic for determining file type, such as looking at the extension (i. e., .jpg)

or magic bytes at start of file data.

Finally, the usefulness of compression can be emphasized by examining the

cumulative space taken by compressed and uncompressed files of a given size, shown in

Figure 4.3. Files of up to 128KB on the Linux workstation root file system occupied

about 1.3GB of total space. However, the total compressed size of the same files ranged

from approximately 800MB with LZRW1 down to 570MB with deflate. These savings

are very significant, although they also underscore that file data compression on its own

may not be enough; at the time this work was originally done in 2002, the lowest figure

of 570MB remained sizeable even by the standards of volatile workstation main memory.
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Compression may be most useful for very small files—those smaller than 16–

32KB. Files smaller than 16KB occupied over 750MB in the uncompressed file system,

but required just 325–400MB using compression. This represented a substantial cost

savings at 2003–2004 memory prices with the only drawback being the inclusion of file

compression in the operating system. While the cost of memory has gone down sub-

stantially and typical size of main memory has increased, the size of operating systems

and applications has increased as well—around 5.5GB today for a full workstation

installation of Linux (up from around 2GB in 2002) with similar increased between

then-current and present versions of Windows. The proportion of space taken by small

files on a base Linux installation has increased a bit more slowly; files under 128KB

total about 2.3GB out of the 5.5GB vs. the example of a 1.3GB out of about 2GB.

Compressing files on NVRAM may have several additional advantages: lower

transfer time, lower cleaning overhead, and potentially longer NVRAM lifetime. By

keeping less data on potentially slower NVRAM, the file system can reduce the time

needed to read or write such files. A log-structured NVRAM file system such as

JFFS2 [78] must pay an overhead to clean “segments;” the cleaning rate is propor-

tional to the rate at which data is written to the file system [59]. By reducing the

size of files via compression, we can reduce the overhead necessary to perform segment

cleaning. Similarly, flash memory—and possibly other NVRAM technologies—degrade

as blocks are erased and written repeatedly. Compression reduces the total amount

of bytes written to the NVRAM, which may extend its lifetime, without reducing the

amount of user data that can be stored on it.

These tests showed that the faster algorithms could keep up then-current desk-

top disk transfer rates (25–50megabytes/second on a typical IDE drive of the era) on

compression. Compression rates for all but the smallest files ran between 26–54MB/sec

and decompression was 3–4 times faster than compression. Table 4.1 shows a more

detailed summary of our results. The tests were run on a processor which was already

fairly dated in 2002–20031 and on a mainstream processor today, we expect that even

deflate should be able to keep up with desktop disk transfer rates without fully loading

the CPU.

1Specifically, an AMD Athlon XP 1700+ running at 1.1GHz, comparable to some present netbook
processors.

27



These tests, however, were operating on complete files of up to 128KB in

length. We noted that the full transfer rate was gradually reached as file sizes increased

above the very smallest. This was more true with LZO and LZRW1, which reached

full speed at file sizes of about 20KB, while deflate reached full speed at about 8KB.

Similarly, all compressors achieved their overall average compression for files of about

12–16KB and above; smaller files showed lesser compressibility.

There are other compression techniques which might be favorable for the small-

est files. These include some of the block compressors developed and evaluated by Wil-

son, et al. [76] or compressors which use pre-existing knowledge about the data, such as

canonical Huffman trees for English/ASCII text or using a pre-populated dictionary [77].
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Chapter 5

The mramfs File System

In this chapter we introduce the file system mramfs which we created to test

the metadata and file compression techniques within a live system. We first present

the design of the system in Section 5.1. We then discuss the process of testing and

benchmarking the prototype system and present the results of those benchmarks in

Section 5.2.

5.1 Design and Implementation

We implemented the prototype file system for the Linux 2.6 virtual file system

(VFS) layer. It differs from existing in-memory file systems for Linux—ramfs and

tmpfs—in that it does not rely primarily on existing kernel structures such as the

inode, dentry, and page caches for its internal representation of file metadata and data.

This is done to model the case where the file system is stored in a persistent NVRAM

buffer and rather than in main memory, and to simulate the use of slower memory. We

simulate persistence, and use a large block of volatile ram. Persistence is implemented

by copying the memory region to disk on unmount, and restoring it from disk when

remounted. Unmounting and remounting the file system also serves to clear out the

VFS cache representation of the in-memory file system.

Our in-memory data objects, shown in Figure 5.1, parallel both the standard

Unix file system objects, and the Linux Virtual File System (VFS) internal represen-

tations. Upon file system creation, the file system itself is represented by a private
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Figure 5.1: mramfs data structures.
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superblock object, an empty root directory, and various memory management struc-

tures. One key difference is that all pointers are relative to the start of our memory

region, to allow the image to be useable without having a fixed memory allocation across

boots or even between different systems or kernel versions. In practice, this was never

tested rigorously; the process of trying to get our code updated to compile on modern

(2.6.30+) kernels and to run on both 32- and 64-bit kernels has revealed a few cases

where this was missed and needed to be fixed.

Our file system utilizes a single large region of memory which is allocated

using either vmalloc or an IO memory mapping. It is mapped into kernel space when

mounted. This could trivially be adapted to use a directly mapped non-volatile memory

if we had one available. With a little more efford, this could be readily adapted to

either an indirectly mapped NVRAM where a only a partial window was mapped into

the address space at any one time.

We utilize our own private memory manager to handle allocations within the

region; this treats the region as a set of fixed-size segments allocated via a bitmap, which

can then be subdivided into smaller objects using a free-list allocator for various preset

sizes of objects. Recovering empty segments was never implemented; this will need to

be implemented. It is also possible that an entirely different allocation scheme would

perform better.

Directories are implemented as chained hash tables using a Jenkins hash [35],

with a single directory/table object and dynamically allocated directory entry objects.

The current implementation of the directory entry object contains a fixed-length field for

the file name; this is not optimally space efficient. In the future, we plan to improve upon

this by allocating strings separately in fields of several lengths, and by using hashing to

identify duplicate strings. Similarly, the current implementation uses a fixed-size hash

table for every directory; it is likely possible to improve on this by using a linked list

implementation for very small directories, and/or by rehashing to increasingly larger

tables as the directory size increases. Given the very good performance of ext2 on 100

subdirectories—see Section 5.2—an optimized path for small subdirectories would seem

particularly promising.

Inodes are implemented to be either compressible or stripped, and packed into
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byte header[16]

length of each inode, or 0 for not allocated
byte body[block length -16]

compressed inode data, where for inode n:
inode 1 is stored in bytes
0 to header[0]

inode 2 is stored in bytes
header[0]+1 to header[1]

this continues for inodes 3–15

Figure 5.2: Pseudocode for mramfs inode structure.

blocks. A two-level table structure is used to allocate and index inode blocks; only

the top level table is allocated initially, with second level tables and individual blocks

allocated dynamically. Our present implementation uses 1024 entries per table to catalog

the inodes, allowing up to approximately 16 million inodes (224) to be indexed. This

could be extended to support larger numbers of inodes as needed. Because inode blocks

are a minimum of 256 bytes long and allocated along 32- or 64-byte-aligned addresses,

we take advantage of the lower 4 unused bits in each inode block pointer to keep a count

of the free inodes within each block.

Individual inodes are stored in blocks of up to 16. Each inode block is a

variable length, but at a minimum 256 bytes long. Each block starts with a 16-byte

header indicating the presence and compressed length of each allocated inode in the

block. Pseudo-code for the inode block structure is included as Figure 5.2. These

headers, in conjunction with the free counts embedded in the inode tables, are used

in lieu of allocation bitmap for the entire file system. When possible, inodes will be

rewritten in place, even if this results in a slight slack space at the end of the inode.

This occurs most of the time when recompression does not increase the size of an existing

inode. When inodes are deleted, or if a recompression results in an inode outgrowing

its space, the entire block is copied rather than shifting data in place. After a copy is

created, the block table pointer is changed to point to the new block and the old block

is freed.

The actual compressed inode is composed of a series of gamma-encoded fields,
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as per our simulations. Notably, the access control fields (UID, GID, Mode) are com-

bined into a single pseudo-ACL number which is then gamma-encoded. One field, the

data pointer, is not currently compressed; it is a direct memory pointer, relative to the

base of our segregated memory space, pointing to either a symbolic link string, the file’s

first data block index, or to a directory structure. The present implementation uses a

fixed 32-bit value; this could be scaled to a smaller fixed number of bits based on the

file system size and might also be scalable to a known level of alignment.

Finally, data files are stored using both a set of very small data block index

objects and a set of dynamically allocated file data blocks. Data block index objects

implement a simple linked list for each file, with each node consisting of a pointer to

a data block and the block’s compressed and uncompressed lengths. While a linked

list is not an efficient structure for random accesses in large files, in the long run we

expect large files to be stored primarily on disk as part of a hybrid file system. When

combined with variable block sizes in the future, we do not expect the cost of seeks

within moderate size files to be an issue.

At present, uncompressed data blocks are all 4KB, corresponding to the page

cache size on a standard Linux system. Allowing larger date blocks (or better still,

flexible data block sizes to store files contiguously) would likely significantly improve

the degree of compression and reduce the overhead of compression headers and block

pointers. Compressed blocks can be any length up to 4KB, although our allocator in

practice uses only a limited number of size buckets to store them, rather than attempting

to pack them byte by byte. Where an individual block compresses to 4KB or larger, the

compressed data is thrown out and the original uncompressed page is stored. Sparse

files are supported by avoiding allocating intermediate data blocks, although there is

still some cost for the intermediate data index objects.

5.2 Benchmark and Results

We performed three sets of testing and benchmarking. The first was a simple

benchmark creating and then unlinking an ordered set of empty files, repeatedly. This

was performed on an earlier version of our code on an earlier Linux kernel (2.4.22) on a

then-midrange (1.7GHz) Pentium 4 system. In practice, we found that on our simple
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create/unlink benchmark, our system performed nearly identically to either ramfs or

ext2 on RAMdisk. Creating and unlinking 4,000 files 4,000 times, for a total of 32

million metadata operations, took approximately 36± 0.55 seconds.

One issue we discovered moving to the 2.6 kernel series is that file system

changes left us unable to continue testing file systems other then ext2 on the Linux

RAMdisk driver (rd). One alternative, the Linux Memory Technology Driver subsystem

(MTD), primarily supports various forms of flash. However, it also has a driver (mtdram)

which supports an emulating an MTD device in main memory. In combination with

another driver (mtdblock) that handles a read-write block device on top of an MTD, we

were able to use this instead of the RAMdisk driver on 2.6 for every file system we

wished to test. It had the added bonus of allowing us to test the JFFS2 file system, a

file system for flash which is popular in the embedded Linux community [78].

5.2.1 Postmark benchmark results

The second test used a modified version the Postmark benchmark, which per-

forms random read and write accesses to a large set of small files. The final tests con-

sisted of running make on a previously configured copy of openssl version 0.9.7. This

second group tests were run on an unpatched copy of the then current Linux kernel, on

a faster system;1 all tests and were run in single user mode with swap disabled. Except

for tests with tmpfs, the 1GB memory was divided into two segments, one (416MB)

left as general purpose memory, with 512MB reserved for either the mtdram driver or

for mramfs.

We tested mramfs with inode compression both enabled and disabled, and

compared it against Linux in-memory alternatives, ramfs and tmpfs, as well as several

disk based file systems running on a MTD block device. These included ext2, as a very

standardUnix disk file system, as well as a number of newer file disk systems: ReiserFS,

JFS, and XFS. Our expectation was that mramfs would roughly match the performance

of ramfs and tmpfs on metadata operations, while lagging somewhat behind them on

file data operations.

This latter performance gap is an inevitable consequence of our design choices,

1Kernel version 2.6.7, using GCC version 3.3.3, on a 2.0GHz AMD Athlon 64 with 1GB of PC2100
DDR SDRAM.

34



as ramfs and tmpfs do not have a data representation separate from the Linux page

cache. This makes them unsuitable for most forms of non-volatile memory, as it is

unlikely that the entire main memory of a system will be non-volatile. Moreover, the

non-volatile region may likely be separate from main memory entirely. In either case,

if we continue to rely on standard Linux page cache IO while copying from the main

memory to the non-volatile buffer, there is an unavoidable additional step and overhead.

While it is possible to avoid copying data by making the entire main memory non-

volatile, this is not a case we find practical in the near future2. It also adds substantial

further complexity to the operating system boot process itself as in Conquest [74] or

requires non-PC-compatible hardware, as in the DEC Alpha systems used for the RIO

File Cache [9].

Alternatively, we could perform some optimization to the data path by avoid-

ing the page cache and doing writes directly to and from NVRAM, as in Conquest and

BPFS [11]. Our system uses page-cache based IO for simplicity’s sake; full or compressed

pages are copied to and from the emulated NVRAM region. This could easily be avoided

trivially if file data compression were not a factor; rather than using page-based writes,

we could operate at the file level of the VFS and avoid copying entire pages. As showed

by Conquest, this would be a definite gain as long as NVRAM operated at main mem-

ory speed (or faster); if it did not, as the difference in memory speeds increased, it

would potentially become disadvantageous. However, it is much less practical for com-

pressed data, as random reads are more difficult, and in place random writes essentially

impossible.

One solution, with small compressed files, would be to handle compression

for the entire file, rather than operating on individual blocks. Files being read could

simply be decompressed completely into pre-allocated pages in main memory. Writes

would require some additional complexity. Options for handling writes include a non-

volatile write buffer or journal to store uncompressed writes until the file could be read

and recompressed, storing writes as deltas (as in JFFS2 [78], and potentially requiring

cleaning) or doing a full file read before any in place writes.

Our results for Postmark are shown in Figure 5.3; these are results for several

2This applies to PC-class systems; embedded systems may be another matter.

35



0

1

2

3

4

5

6

7

8

9

10

11

12

MRAMFS
Compressed

Inodes

MRAMFS
Uncompressed

Inodes

ext2 JFS ReiserFS (with
subdirectories)

XFS (with
subdirectories)

JFFS2 (with
subdirectories)

Tr
an

sa
ct

io
n

 R
at

es
 (r

el
at

iv
e 

to
 e

xt
2,

 h
ig

h
er

 is
 b

et
te

r)

Creation Only Creation Total Transactions Read Append Read MB/s Write MB/s

Figure 5.3: Postmark transaction rates for 100,000 transactions, 50,000 files. Unless
noted otherwise, the benchmark was run against a single directory. The vertical axis
represents transaction rates normalized to ext2/3/4; higher is better, representing a
larger number of transactions per time period.

file systems, relative to ext2 on RAM disk.3 We made slight modifications to the

Postmark 1.5 source code in order to replace the existing second-granularity timer with

a millisecond-granularity timer. No other changes were made; we ran Postmark with

the following options: 100,000 transactions, 50,000 files, and file sizes between 1 and

4095 bytes and except where otherwise noted, in a single directory. The raw data for

our final set of postmark runs is included in Appendix C.

We took ext2 (running on RAM disk), as a baseline for comparison. Results

for tmpfs and ramfs are not shown in Figure 5.3. Both file systems performed nearly

identically, and would be off the scale of the graph—normalized to ext2, they performed

55–60 times faster. Most interestingly, mramfs with inode compression enabled slightly

outperformedmramfs without inode compression enabled. Despite some disappointment

with other performance results, this clearly supports our belief that gamma compression

for inodes is a nearly free space savings.

We believe performance of ext2 is the result of the extreme inefficiency of

3In this case, the RAM disk was the MTD block drive and not the older /dev/ram driver.

36



0

10

20

30

40

50

60

MRAMFS
compressed

inodes

MRAMFS
uncompressed

inodes

ext2 with 
subdirectories

JFS with 
subdirectories

JFS ReiserFS XFS MRAMFS 
compressed
inodes, with 

subdirectories

JFFS2 with 
subdirectories

Ti
m

e 
in

 S
ec

on
ds

(lo
w

er
 is

 b
et

te
r)

Total Seconds Seconds of Transactions
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otherwise, the benchmark was run against a single directory. The vertical axis represents
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linear-search data structures when dealing with very large numbers of files. This was

true for JFFS2 when run in a single directory as well, to a much greater degree—

running Postmark took significantly in excess of 10 minutes, and was cancelled before

completion.

We resolved this problem by rerunning the full set of tests with the Postmark

option 100 subdirectories. With the exceptions of JFFS2 and ext2, all file systems

performed comparably with either—no more than slightly better or worse in any case.

Both JFFS2 and ext2 performed significantly better with smaller directory sizes; JFFS2

was roughly comparable to the other file systems tested. With 100 subdirectories, ext2

performed approximately 20X faster than with a single directory, or twice as fast as the

next fastest file system—JFS—which performed comparably in either case.

5.2.2 Build benchmark results

The results from our build benchmark are shown in Figure 5.5. We compare the

build times (both total and system time) normalized relative to tmpfs. We compared the
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Figure 5.5: Build benchmark results.

full set of file systems from the Postmark benchmark, beyond those displayed, but the

results were all very consistent. Disturbingly, the usefulness of this sort of benchmark for

file system performance on a modern system is called into question; with the exception

of the system time used by JFFS2, all of our results were within 5% of the time on tmpfs.

This includes our results running off of disk with a cold cache. OpenSSL is a medium

sized package, consisting of 16MB of files, around 200,000 lines of code in 684 .c files.

We repeated the tests on MRAMFS with a simulated system memory of 48MB and our

results were similar. At a minimum, for build benchmarks to be useful for testing file

systems, it seems clear that the size of the code base must be significantly larger.

5.2.3 Compressibility

In terms of inode compressibility, because of the very limited range of meta-

data (permissions, particularly) and the very limited depth-in-time of our testing, the

compression achieved by mramfs during our benchmarking was better than we achieved

during simulation using inodes dumped from production systems. Instead of averaging

18-20 bytes per inode, our benchmark file systems averaged 16 bytes per inode, with a
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maximum of only 19 bytes. Our uncompressed inode implementation was aggressively

stripped, and used 36 bytes per inode.

It was our original intention to also compare mramfs with file data compres-

sion enabled. Unfortunately, the data compression code was never reliable enough to

complete significant runs of Postmark or of large builds, so our preliminary performance

analysis is based on very small tests. At the point work was terminated, it was per-

forming unacceptably, at around 20–25% of the speed of regular mramfs. This may be

a result of implementation flaws; compression speeds demonstrated by recent versions

of the Linux compressed cache project are much better. [31]
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Chapter 6

Future Work and Retrospective

In this chapter, we first discuss lessons learned and further work we had in-

tended to complete related to the specific implementation of mramfs in Section 6.1. We

follow this with a discussion of more general areas for consideration, either as future

work or which have been addressed by more recent publications in Section 6.2.

6.1 mramfs in Retrospect

The file system we developed was a prototype/proof-of-concept; there are a

number of factors which should be addressed, either as a matter of future research, or

in order to convert this into a practical tool for production.

First, there are minor functions which needed to be implemented for a produc-

tion file system; these include handling device nodes and other special files, implement-

ing now-standard features such as Posix ACLs and extended attributes, and making

sure that directory behavior was fully correct (this last was a siginifcant source of bugs

in testing and benchmarking, especially as regards symlinks.)

It is also likely that moving to any particular physical NVRAM technology may

require some additional support, although our implementation attempted to segregate

all memory read/write access to a limited subset of utility functions. Of course, this

prevents the use of execute-in-place and directly memory mapping data files which may

be desirable memory is directly mappable and roughly as fast as main memory.

Second, the prototype is currently outdated; there have been several major
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changes to the VFS layer between 2.6.7 and the present 2.6.37. Additionally, develop-

ment was done on a single-threaded 32-bit CPU, and only a minimal effort made at the

to make it runnable on a 64-bit or SMP system. This was an acceptable first step in

2003; it would not be today. Both of these issues would need to be addressed to make it

a usable tool for further research today, let alone to be useful in any kind of production

setting.

One other sense in which mramfs is outdated is in the implementation and

debugging process we used; in 2003, user-space file system support on Linux was very

much a moving target. It was not clear whether LUFS or FUSE was the better bet,

and neither was well-documented compared to the VFS itself. We initially did some

development on LUFS, but that had enough problems at the time that we abadoned it

to move our implementation into the kernel relatively early on. FUSE proved a much

more stable and rapidly evolving project, and would be the obvious choice today for

stabilizing the system before moving it into the kernel.

We had intended to examine ways to make our directory structures more space

efficient; some of these methods are obvious and can be expected to be computationally

cheap, like using variable-length fields. Others, like hashing strings for deduplication, or

using a fixed text compressor, would require further experiment to find out if the savings

are significant and if the potential implementation is too computationally expensive.

The Jenkins hash function we used for file names was selected for its expedient

availability and GPL-compatible license [35]; its appropriateness and performance could

use validation. The use of hash functions (generally in hashed trees) in existing file

systems like ext3 and ext4 may be instructive, although the demands of a purely in-

memory hash table and an on-disk structure are likely to be different.

We had intended to rework file data compression, as the initial results failed to

achieve satisfactory performance comparable to our userspace simulations. Our initial

belief had been that this was a result of doing the compression on individual blocks,

and that any implementation of that policy was going to be inherently slower. One

alternative we had intended to explore was the comparison with full-file compression

policies; this might also allow for data compression while moving from the current page-

cache based read/write implementation to one using the file methods.
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However, the performance achieved by the compressed cache project [31] sug-

gests both that some or all of our performance problem may be the result of implemen-

tation details, and also provides a possible source of a better implementation of in-kernel

block compression. If block-by-block compression is used, techniques for packing com-

pressed blocks in a space efficient manner avoiding internal fragmentation bears further

examination; Huang, et al. discuss this in the context of their compressing FTL [33].

Compression aside, we had intended to support variable size allocation in order

to increase space efficiency for file data, both in terms in decreased internal fragmenta-

tion and a decreased need for block pointers. As an alternative, this could be handled

by the use of extents with very small data blocks, as explored in NEBFS [61].

6.2 Future Work

The original intent had been to use this module as a tool in future research

for file systems for non-volatile RAM. While it has been left as is, there are a number

of broader areas we had hoped to examine; these include policies and mechanisms for

splitting data between NVRAM and disk in a hybrid file system, space efficiency, and

the performance impact of varying memory technologies. Some of these have been

examined by more recent works.

In the area of metadata compression techniques, there are a number of possible

avenues that can still be explored. One is the efficient encoding of time values, which

tend to be fairly long bit strings if encoded individually. Additionally, while all of our

tests up to now focused on using a single type of compressor for every field in an inode,

it might be possible to improve the total reduction in size with a hybrid compressor

which applied the best type of compressor for each particular field.

Similarly, for file compression, some advance knowledge of the file type, per-

haps encoded into the inode as done in some file systems, would allow for more intelligent

selection of a compressor. This would also apply to avoiding attempts to recompress

files containing compressed data; both our own file system profiling and existing stud-

ies [25] show the large numbers of compressed files, especially multimedia. Attempting

to recompress these have an negative impact on compression speed and ratio. Being
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able to recognize these files - or at least a common subset of these - without first trying

to compress them would improve performance.

The use of multiple compression profiles on a single system, either for different

file systems/mount points or at the inode or directory level, could yield higher com-

pression rates. For one possible example, on small Linux or other Unix-like systems,

one could flag files as either “system” or “user” profiles. This could be further refined

with adaptive techniques, either with knowledge about different classes of files, or by

trying to compress a given inode with several profiles in parallel and save the smallest

resulting compressed inode along with a prefix to indicate which decompressor to use.

Another interesting question is to what degree the description of on-disk data

is compressible. One possible way to do this would be to use a fast adaptive block or

stream compressor on groups of inodes-like structures on disk; this might on the one

hand eliminate the high cost of a block header per individual file while maintaining

relatively low-cost random access to any file’s block pointers.

One issue we identified for future work but did not get to examine is reliability:

possible improvements include continuous online consistency checking, the ability to

perform consistent backups to disk or a second NVRAM buffer while mounted, and

improvements in performance due to simpler locking mechanisms. This issue has been

examined in in much greater depth in recent works, including those by Greenan [29]

and Kang [39]; another example is the short-circuit shadow paging technique suggested

by the BPFS system [11].

One area we did not identify at the time for future work, but which has become

increasingly important is power efficiency. Work in this area has focussed both on

limiting mechanical disk access on PC and server class machines, for example work on

smart spindown [3, 4], and also on modeling the power efficiency of flash file systems

for embedded or mobile systems [10, 28].

While mramfs is a tradition Unix/FFS-like file system adapted to memory, it

would be interesting to see how the in-memory compression techniques applied to a one

of the more recent tree-based file systems; the design of BPFS [11] provides one basis for

how such a system might be applied to NVRAM, and some early reports of very good

compression performance with similar on-disk file systems like zfs [44] and btrfs [43]
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suggests that this should receive further examination.

Lastly, one potential application for these techniques would be to examine

whether there is any potential performance benefit to using them to increase the amount

of purely volatile memory available for metadata caches. While this seems unlikely

with typical PC workloads on relatively memory-rich hardware, it might be well suited

to specific metadata-heavy workloads or to relatively memory-constrained mobile or

embedded hardware, although in those cases a possible tradeoff on CPU load and power

efficiency would need to be addressed.
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Chapter 7

Conclusions

Compression of small objects such as metadata and small files has long been

neglected because there is little point to compressing small objects that must suffer the

long latency of disk storage. As long as such objects live permanently on disk and are

only cached in memory, compression will remain optional. For disk/NVRAM hybrid

file systems, however, compression is an important tool for reducing NVRAM capacity

requirements and system cost.

We have shown that both metadata and file data are highly compressible with

little increase in code complexity. Although there is a cost in CPU cycles associated

with compressing or decompressing a piece of data, our performance numbers indicate

that on a modern processor this cost is negligible compared to the latency of a request

to disk.

By using tuned compression techniques, we can save more than 60% of the

inode space required by previous NVRAM file systems, and with little impact on per-

formance. Our file system performed slightly better on the modified Postmark bench-

mark when compression is enabled as compared to disable, and the slowest compressor

we evaluated averaged less than four microseconds per inode, an improvement of 250:1

over a 1 millisecond disk access. The fastest compressors we evaluated were 3–4 times

faster still. Finally, even as compared to purely in-memory file systems, compression

offers very close performance for metadata operations.

Similarly, compressing small files will improve performance by increasing how

many small, latency-sensitive files which can be kept in NVRAM for a given capacity;
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our initial simulation tests showed doubling capacity is readily achievable. On then-

current processors the average compression rates for LZRW1 and LZO could match

the typical data rates of typical desktop disk systems. At present, the balance has

moved further in favor of CPUs. With the typically higher speeds of decompression,

reading compressed data is very nearly free; 1KB reads decompress in around 30–

100 microseconds, 20–100 times faster than a single disk access. While our prototype

implementation of data block compression was not successful, we believe that this was

problem of implementation, and that a more refined implementation would achieve

significantly better performance. This is also suggested by the promising performance

figures for the compressed swap driver for Linux [31].

Overall, our results indicate that even with a relatively low cache miss rate,

a hybrid file system including a compressed non-volatile memory component will offer

a significant speed improvement over a typical disk-only file system, while at the same

time requiring significantly fewer resources than hybrid file systems that do not take

advantage of compression.
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Appendix A

Code Availability

Source code for the mramfs module is distributable under the GPL. Versions

were created for 2.4 and early 2.6 kernels; it has not been updated for later versions of

2.6.

The final 2.6 version which is believed to compile on versions up to 2.6.7. It is

available for download at https://github.com/nkedel/MRAMFS
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Appendix B

Design notes

Memory allocation:

* Large buffer of 64MB to 2GB (easily extendable to 16GB)

* Buffer is divided into 64KB segments; segment 0 is reserved,

remainder are allocated by bitmap

* Segments are split into like-sized small objects (16B - 32KB)

* Small objects are stored in free lists by superblock

Major data structures:

---------------------

mramfs_super:

* kept in kernel memory and mirrored in memory buffer by

read_super/put_super

* keeps private information:

table of inode tables,

root directory pointer,

memory allocation free lists,

segment allocator master pointers,

pointers to acl_hash and acl_table

file and block counts

acl_table: ordered table of acls

acl table entry contains UID, GID, permissions

acl_hash: hash pointers to acls

directory objects:

hashtable of dentry objects

file count

pointers to owning and parent inodes
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dentry object: name, inode number (plus next value in list for hash table)

Inodes

------

Three level structure:

Table of tables (mramfs_super->inodes) --

table of 1024 inode tables, allocated at FS creation time

Inode block tables --

table of 1024 inode block pointers, allocated on first use

(never deallocated)

Inode blocks --

256-byte block of packed inodes, allocated on first use

(never deallocated)

Inode block format, uncompressed:

Maximum 4 million inodes --

block_offset: inode_num \& 3 (bits 0-1)

block_number: (inode_num >> 2) \& 1023 (bits 2-11)

table_number: (inode_num >> 12) \& 1024 (bits 12-21)

Bytes 0..1: 16 bit "inodes in use" bit-mask, bits 0..3 used

Bytes 2..255: Stores 4x ~50-byte uncompressed inodes

(plus wasted space)

Uncompressed inodes stored at fixed offsets (2, 64, 128, 192);

to find a given inode, just go to offset within block.

Inode block format, compressed:

Gamma compressed fields, plus pseudo-ACL mechanism

Bytes 0..1: 16 bit "inodes in use" bit-mask, all bits

Bytes 2..255: Stores UP TO 16x 15-63-byte compressed inodes

Maximum 16 million inodes --

block_offset: inode_num \& 15 (bits 0-3)

block_number: (inode_num >> 4) \& 1023 (bits 4-13)

table_number: (inode_num >> 14) \& 1024 (bits 14-23)

Compressed inodes are stored packed, in the form:

Byte 0: len

Bytes 1..len: compressed data (padded to byte boundary)

Byte len+1: beginning (len) of next packed inode.

To find a given inode n:

traverse n-1 prior inodes as a linked list.

Since no compressed inode can be as short as 0 bytes, we mark a deleted
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inode by a length of 0 (an empty inode block is simply 18 zero bytes.)

Problem: recompressing an inode tends to make it bigger.

Current solution:

* If there are sufficient slack bytes at the end, move the remaining

bytes up.

* If there aren’t sufficient slack bytes at the end, we relocate the

inode data to a new inode.

Possibly also: * preallocate 18 bytes rather than 15

(this would allow at most 14 inodes per block; similarly could

preallocate 19, for at most 13 inodes/block)

Since no compressed inode can be as short as 4 bytes, we mark a relocation

by any inode with a length of 4.

Problem: we relocate very frequently in a full file system.

Solution:

* As inode blocks start to fill up, switch those offsets within the

block that are marked as empty to marked as used.

* Never allow double relocations;

if we’re replacing an inode that’s been relocated, and the

new inode won’t fit, delete the relocation and relocate to an

entirely new inode

* Try to move back relocations:

If we can fit an entire inode that was previously relocated,

delete the previous relocation.

Finding a free inode:

scan starting at a given inode table^

if inode table is NULL, first inode in table is free

if inode table is not NULL, scan over all blocks in table

if block is NULL, first inode in block is free

if block is not NULL, check mask:

if mask is all set (-1 short/0xFFFF) block is full

otherwise free space in block, scan over mask to find 0 bit

-- bit number of free bit indicates

^ in particular, for relocations, we never want to relocate to a

lower inode number
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Appendix C

Postmark benchmark data

MRAMFS (compressed inode, uncompressed blocks)

50,000 files/100,000 transactions/1-4095 bytes

Run1:

50.423000 seconds total

38.110000 seconds of transactions (2623.983207 per second)

Files:

99928 created (1981.794023 per second)

Creation alone: 50000 files (4100.713524 per second)

Mixed with transactions: 49928 files (1310.102335 per

second)

49907 read (1309.551299 per second)

49997 appended (1311.912884 per second)

99928 deleted (1981.794023 per second)

Deletion alone: 49856 files (415466.666667 per second)

Mixed with transactions: 50072 files (1313.880871 per

second)

Data:

112.94 megabytes read (2.24 megabytes per second)

235.99 megabytes written (4.68 megabytes per second)

Run2:

Time:

50.215000 seconds total

37.839000 seconds of transactions (2642.775972 per second)

Files:

99731 created (1986.079857 per second)
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Creation alone: 50000 files (4080.300310 per second)

Mixed with transactions: 49731 files (1314.278919 per

second)

49905 read (1318.877349 per second)

50009 appended (1321.625836 per second)

99731 deleted (1986.079857 per second)

Deletion alone: 49462 files (405426.229508 per second)

Mixed with transactions: 50269 files (1328.497053 per

second)

Data:

112.91 megabytes read (2.25 megabytes per second)

235.60 megabytes written (4.69 megabytes per second)

MRAMFS (uncompressed inode, uncompressed blocks)

50,000 files/100,000 transactions/1-4095 bytes

Run1:

Time:

54.913000 seconds total

40.848000 seconds of transactions (2448.100274 per second)

Files:

99928 created (1819.751243 per second)

Creation alone: 50000 files (3594.794737 per second)

Mixed with transactions: 49928 files (1222.287505 per

second)

49907 read (1221.773404 per second)

49997 appended (1223.976694 per second)

99928 deleted (1819.751243 per second)

Deletion alone: 49856 files (319589.743590 per second)

Mixed with transactions: 50072 files (1225.812769 per

second)

Data:

112.94 megabytes read (2.06 megabytes per second)

235.99 megabytes written (4.30 megabytes per second)

Run2:

Time:

56.837000 seconds total

41.405000 seconds of transactions (2415.167250 per second)

Files:

99928 created (1758.150501 per second)
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Creation alone: 50000 files (3281.916639 per second)

Mixed with transactions: 49928 files (1205.844705 per

second)

49907 read (1205.337520 per second)

49997 appended (1207.511170 per second)

99928 deleted (1758.150501 per second)

Deletion alone: 49856 files (253076.142132 per second)

Mixed with transactions: 50072 files (1209.322546 per

second)

Data:

112.94 megabytes read (1.99 megabytes per second)

235.99 megabytes written (4.15 megabytes per second)

ext2 (mtdblock)

50,000 files/100,000 transactions/1-4095 bytes

Time:

159.565000 seconds total

106.300000 seconds of transactions (940.733772 per second)

Files:

99928 created (626.252624 per second)

Creation alone: 50000 files (1064.169416 per second)

Mixed with transactions: 49928 files (469.689558 per second)

49907 read (469.492004 per second)

49997 appended (470.338664 per second)

99928 deleted (626.252624 per second)

Deletion alone: 49856 files (7938.853503 per second)

Mixed with transactions: 50072 files (471.044214 per second)

Data:

112.94 megabytes read (724.81 kilobytes per second)

235.99 megabytes written (1.48 megabytes per second)

ext2 (mtdblock) w/ subdirs

50,000 files/100,000 transactions/1-4095 bytes

Time:

7.628000 seconds total

4.990000 seconds of transactions (20040.080160 per second)

Files:

100001 created (13109.727320 per second)

Creation alone: 50000 files (24789.291026 per second)
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Mixed with transactions: 50001 files (10020.240481 per

second)

49966 read (10013.226453 per second)

49927 appended (10005.410822 per second)

100001 deleted (13109.727320 per second)

Deletion alone: 50002 files (80518.518519 per second)

Mixed with transactions: 49999 files (10019.839679 per

second)

Data:

113.67 megabytes read (14.90 megabytes per second)

236.57 megabytes written (31.01 megabytes per second)

jfs (mtdblock) - subdirs

50,000 files/100,000 transactions/1-4095 bytes

Time:

17.735000 seconds total

11.323000 seconds of transactions (8831.581736 per second)

Files:

100001 created (5638.624189 per second)

Creation alone: 50000 files (12297.097885 per second)

Mixed with transactions: 50001 files (4415.879184 per

second)

49966 read (4412.788130 per second)

49927 appended (4409.343813 per second)

100001 deleted (5638.624189 per second)

Deletion alone: 50002 files (21313.725490 per second)

Mixed with transactions: 49999 files (4415.702552 per

second)

Data:

113.67 megabytes read (6.41 megabytes per second)

236.57 megabytes written (13.34 megabytes per second)

jfs (mtdblock) - no subdirs

50,000 files/100,000 transactions/1-4095 bytes

Time:

15.953000 seconds total

10.379000 seconds of transactions (9634.839580 per second)

Files:

99928 created (6263.900207 per second)

54



Creation alone: 50000 files (12748.597654 per second)

Mixed with transactions: 49928 files (4810.482705 per

second)

49907 read (4808.459389 per second)

49997 appended (4817.130745 per second)

99928 deleted (6263.900207 per second)

Deletion alone: 49856 files (30179.176755 per second)

Mixed with transactions: 50072 files (4824.356874 per

second)

Data:

112.94 megabytes read (7.08 megabytes per second)

235.99 megabytes written (14.79 megabytes per second)

reiserfs (mtd) - subdirs

50,000 files/100,000 transactions/1-4095 bytes

Time:

41.499000 seconds total

31.061000 seconds of transactions (3219.471363 per second)

Files:

100001 created (2409.720716 per second)

Creation alone: 50000 files (8386.447501 per second)

Mixed with transactions: 50001 files (1609.767876 per

second)

49966 read (1608.641061 per second)

49927 appended (1607.385467 per second)

100001 deleted (2409.720716 per second)

Deletion alone: 50002 files (11171.134942 per second)

Mixed with transactions: 49999 files (1609.703487 per

second)

Data:

113.67 megabytes read (2.74 megabytes per second)

236.57 megabytes written (5.70 megabytes per second)

xfs-mtd-subdirs

50,000 files/100,000 transactions/1-4095 bytes

Time:

31.223000 seconds total

19.366000 seconds of transactions (5163.688939 per second)
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Files:

100001 created (3202.799219 per second)

Creation alone: 50000 files (8614.748449 per second)

Mixed with transactions: 50001 files (2581.896107 per

second)

49966 read (2580.088815 per second)

49927 appended (2578.074977 per second)

100001 deleted (3202.799219 per second)

Deletion alone: 50002 files (8260.697175 per second)

Mixed with transactions: 49999 files (2581.792833 per

second)

Data:

113.67 megabytes read (3.64 megabytes per second)

236.57 megabytes written (7.58 megabytes per second)

mramfs compressed - subdirs

50,000 files/100,000 transactions/1-4095 bytes

Deleting subdirectories...Done

Time:

47.128000 seconds total

35.482000 seconds of transactions (2818.330421 per second)

Files:

100001 created (2121.902054 per second)

Creation alone: 50000 files (4345.558839 per second)

Mixed with transactions: 50001 files (1409.193394 per

second)

49966 read (1408.206978 per second)

49927 appended (1407.107829 per second)

100001 deleted (2121.902054 per second)

Deletion alone: 50002 files (357157.142857 per second)

Mixed with transactions: 49999 files (1409.137027 per

second)

Data:

113.67 megabytes read (2.41 megabytes per second)

236.57 megabytes written (5.02 megabytes per second)

JFFS2 (subdirectories)

50,000 files/100,000 transactions/1-4095 bytes
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Time:

37.880000 seconds total

22.651000 seconds of transactions (4414.816123 per second)

Files:

100001 created (2639.941922 per second)

Creation alone: 50000 files (4880.905896 per second)

Mixed with transactions: 50001 files (2207.452210 per

second)

49966 read (2205.907024 per second)

49927 appended (2204.185246 per second)

100001 deleted (2639.941922 per second)

Deletion alone: 50002 files (10030.491474 per second)

Mixed with transactions: 49999 files (2207.363913 per

second)

Data:

113.67 megabytes read (3.00 megabytes per second)

236.57 megabytes written (6.25 megabytes per second)

tmpfs

50,000 files/100,000 transactions/1-4095 bytes

Time:

2.882000 seconds total

1.962000 seconds of transactions (50968.399592 per second)

Files:

99928 created (34673.143650 per second)

Creation alone: 50000 files (65104.166667 per second)

Mixed with transactions: 49928 files (25447.502548 per

second)

49907 read (25436.799185 per second)

49997 appended (25482.670744 per second)

99928 deleted (34673.143650 per second)

Deletion alone: 49856 files (328000.000000 per second)

Mixed with transactions: 50072 files (25520.897044 per

second)

Data:

112.94 megabytes read (39.19 megabytes per second)

235.99 megabytes written (81.88 megabytes per second)

Build benchmark results:
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Disk - ReiserFS - Warm Cache/Tails

real 2m5.348s

user 1m13.733s

sys 0m49.267s

Disk - ReiserFS - Cold Cache/Tails

real 2m12.421s

user 1m14.264s

sys 0m52.669s

MRAMFS - Compressed Inodes - Warm Cache

real 2m4.648s

user 1m13.588s

sys 0m50.856s

MRAMFS - Compressed Inodes - Cold Cache

real 2m6.290s

user 1m14.231s

sys 0m51.600s

OVERALL GAvg GMax GMin

2915 122 145 113

Field GAvg GMax GMin

ACL 5 5 5

Size 11 34 2

Ctime 31 31 31

Mtime 18 18 18

Atime 18 18 18

Links 2 6 2

Vers. 2 2 2

Disk - Ext2 - Warm Cache

real 2m8.311s

user 1m14.451s

sys 0m51.696s

Disk - Ext2 - Cold Cache

real 2m9.086s

user 1m13.952s

sys 0m50.983s
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tmpfs

real 2m6.453s

user 1m14.398s

sys 0m52.021s

jfs - mtd

real 2m8.947s

user 1m13.901s

sys 0m51.596s

reiserfs - mtd

real 2m9.292s

user 1m13.817s

sys 0m53.009s

jffs2 - mtd

real 1m58.055s

user 1m13.748s

sys 0m41.191s
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